

M. E. C. — I. N. E. P.

CENTRO BRASILEIRO DE PESQUISAS EDUCACIONAIS 379,156

MODELO N.º 2

_		s.d.
.2	Orientação para um trabalho científico.	DISTRIBUIÇÃO
200	cientísico.	
4		
2		
17		
13		
fu		
6		
12	<u></u>	
19		
8		
is a		
Selle		
Su		
13		
th	3	
13		
17		
6)		
છ		
BE		Br9
7		Br 9 6av. 3

ORIENTAÇÃO RARA A

ELABORAÇÃO DE

UM TRABALHO CIRHTÍFICO

- IDICC-

Maria Julieta S.Ormastroni Adolfo Walter P. Canton Eurico Carvalho Filho

A ELABORAÇÃO DE UM TRABALHO CIENTÍFICO

Maria Julieta S. Ormastroni

Diretora Executiva do IBECC de S.P.

Infelizmente, nem todos que elaboram um trabalho científico seguem normas já estabelecidas para sua apresentação. É fundamental que o trabalho seja batido à máqui na, para facilidade de leitura e apresentação. Para isto, deve ser batido de um só lado da fôlha e com espaço duplo, se possível, com duas cópias.

As páginas devem ser numeradas e, os pontos e as palavras que devem ser destacadas, devem vir sublinhados.

- l TÍTULO Éste deve vir no alto da página, bem conciso e em letras maiúsculas.
- 2 AUTOR Logo abaixo do título, do lado direi to. Podendo ser posto logo abaixo dêste, o cargo, a posição, credenciais ou títulos do autor. Também deve ser dado o nome da Escola, Instituição ou Órgão a que pertence.
- 3 RESUMO Um resumo muito conciso pode ser apresentado antes do trabalho propriamente dito.
- 4 INTRODUCÃO Aqui deve ser dado, de um modo geral, o motivo que levou o autor a realizar seu trabalho.
- 5 MATERIAL E MÉTODO Esta é a parte fundamental do trabalho. Devem ser descritos os métodos e as técnicas empregadas, bem como, qual foi o material utilizado. Clareza e objetividade deverão ser os pontos principais do mesmo, com relatos reais observados pelo autor. As experiências terão que ser repetidas inúmeras vêzes antes de ser tirada uma conclusão.

Importante: evitar conclusões precipitadas após uma ou duas ex periências. O trabalho pode ser de pesquisa original ou não, porém é imprescindível que o autor informe quando não é original.

- 6 RESULTADOS-e-DISCUSSÕES Dar quais foram os resultados obtidos; discussão, bem como suas características comparações e confrontações de testes ou dados obtidos neste trabalho e, em outros consultados.
- 7 CONCLUSÕES Não deixe de apresentar as conclusões a que chegou. Mesmo que sejam contrárias ao seu ponto de vista primitivo. Não inverta ou modifique as conclusões, para dar a que almeja ou supõe seja a correta, pois isto logo seria evidenciado e tiraria todo o respeito dado ao autor.
- 8 BIBLIOGRAFIA Provavelmente, você não será o primeiro a se utilizar da pesquisa que escolheu, você poderá abordá-la sob outros aspectos, com outras técnicas etc. mas, não deve partir do zero, você deve, e precisa saber o que já foi feito sôbre o assunto, portanto deverá ler o maior número possível de trabalhos, antes de iniciar o seu. Só assim, você poderá contribuir com algo nôvo para a ciência.

As pessoas que o auxiliaram com conselhos ou orientação poderão ser mencionadas na <u>Introdução</u>. Pode-se fazer um tiem a parte, o que é mais comum, de <u>Agradecimentos</u>. No final do trabalho virá a <u>Bibliografía</u>, isto é, a lista dos livros erevistas consultadas sôbre o assunto. Existem normas estabelecidas para a apresentação destas listas. <u>Livros</u>: o sobrenome do autor por extenso em maiúsculo e depois as iniciais do nome; o título do livro; a casa editora; a cidade ondo foi editado e o ano. <u>Revista</u>: sobrenome do autor por extenso em maiúsculo, e de pois as iniciais do nome; título do artigo; nome da revista; vo lume e número; página onde se encontra o ano da publicação.

9 - <u>ILUSTRAÇÕES</u> - Fotografias, Tabelas, Desenhos - etc.. Sempre que forem necessárias ao esclarecimento do traba-- lho, deverão ser apresentadas. Deve ser dado junto ao corpo do

texto referências assim: "Fig. 1", "Tabela III", "Fot. 4", e - nunca apresentar frases "vide figura abaixo" etc. As figuras, e as fotografias, devem trazer números arábicos e as tabelas números romanos, como ficou evidenciado nos exemplos dados.

Bibliografia:

- 1º UNESCO, Normas que de l'em aplicar-se en mate rial de publicaciones científicas, Unesco, Paris, 1962.
- 2º A.L.A., Cataloging rules for author and title entries, 2nd edition, A.L.A. Chicago, 1949.
- 3º DIMAS, D.G., Algumas observações necessárias na elaboração de artigos e relatórios, Rev. da Escola de Minas, nº 2, ano XXV, pg. 73, 1966.

NOÇÕES ELEMENTARES SÔBRE A TEORIA DOS ERROS

Adolfo Walter Canton Assistente da Cadeira Estatística da F.F.C.L. da U.S.P.

1. Medidas

Medir uma grandeza é compará-la com outra de mesma espécie tomada como unidade; dessa comparação resulta um número, o qual é definido como medida da grandeza, segundo a unidade considerada.

As medidas classificam-se em:

a) medidas diretas:

são aquelas obtidas através comparações me cânicas. Exemplos: medida do comprimento, realizado com fita métrica; medida de mas sa com balanças de alavanca, etc...

b) medidas indiretas: são aquelas obtidas através relações existentes entre a grandeza, cuja medida é pro curada, e outras cujas medidas podem ser obtidas por comparações mocânicas. Exemplo: a medida de superfície com unidade de comprimento, a medida da densidade absoluta (d $\frac{m}{v}$), etc.

No entanto, quando procuramos uma medida com alta precisão, e portanto medimos a grandeza várias vézes para termos certeza do resultado, ocorre que nessa série de medidas feitas, os resul tados não são coincidentes, mas em geral "bastante" próximos. -(A sério do medições pode ser realizada com o mesmo aparêlho, ou com aparelho diferente para cada medição; pela mesma pessoa ou não). Jual seria então o verdadeiro valor da grandeza?

2. Erros

Dado que os resultados das várias medidas, não são sempre coincidentes, afirmamos que "tôda medida traz erros inevitáveis". Para efeito de estudo, classificamos os erros em:

a) erros sistemáticos: são aquêles que em geral, provém da imperfeição dos aparelhos de mensuração, ou do método empregado. Seus efeitos po-dem ser pesquisados e anulados. Exemplo: erros provenientes de fita mé trica errada.

b) erros acidentais:

são os consequentes de várias causas - indeterminadas, em geral devidos à pró pria imperfeição humana, tais como fal ta de ajustamento perfeito do aparêlho imterpolação nas leituras da escala, - variações de temperatura ou de outras condições ambientes que afetem a medida etc... Não apresenta, ao contrá-rio dos erros sistemáticos, qualquer - regularidade.

As definições dadas a seguir são puramente teóricas, pois de pendem de valor verdadeiro da grandeza, o qual nunca é possível de ser encontrado, uma vez que tôda medida é afetada de êrro.

<u>Érro absoluto</u> - de uma medida é a diferença entre ela e o verdadeiro valor de grandeza; pode ser positivo ou negativo.

<u>Érro relativo</u> - é o quociente entre o êrro absoluto o valor da grandeza.

Não sendo possível a obtenção do verdadeiro valor da medida da grandeza, usamos certas médias como valores bastante próximos do verdadeiro valor da grandeza. En geral usamos a média aritmética.

Assim, sendo x_i os resultados das \underline{n} medidas, definimos a média aritmética \overline{x} pela relação $x_1 + x_2 + \dots + x_n$

 $\bar{x} = \frac{x_1 + x_2 + \cdots + x_n}{n}$

Dosvio - é a diferença entre a medida e a média escolhida como representativa do conjunto das medidas da - mesma grandeza.

O desvio usando x é dado por:

$$d_i = (x_i - \bar{x})$$
, p/ i = 1, 2, ..., n.

Desvio médio - é a média aritmética dos desvios

$$d_{m} = \frac{d_{1} + d_{2} + \cdots + d_{n}}{n}$$

Desvio médic absoluto - é a média aritmética dos valores absolutos dos desvios

$$d_{m} = \frac{|d_{1}| + |d_{2}| + \dots + |d_{n}|}{n}$$

Desvio médio quadrativo - é a raiz quadrada da média aritmética - do quadrado dos desvios.

$$d_{mq} = \sqrt{\frac{d_1^2 + d_2^2 + \dots + d_n^2}{n}}$$

Exemplo 1: Em 5 medidas de uma mesma - gra deza, obtivemos os seguintes valo-- res:

Temos:

I) Valor provável:
$$\bar{x} = \frac{10.31 + 10.31 + 10.32 + 10.30 + 10.31}{5} = 10.31.$$

II) Desvio médio:
$$d_1 = 10,31 - 10,31 = 0$$

$$d_2 = 10,31 - 10,31 = 0$$

$$d_3 = 10,32 - 10,31 = 0,01$$

$$d_4 = 10,30 - 10,31 = 0,01$$

$$d_5 = 10,31 - 10,31 = 0$$

$$d_m = 0 + 0 + 0,01 + (-0,01) + 0 = 0 = 0$$

$$5 = 0.$$

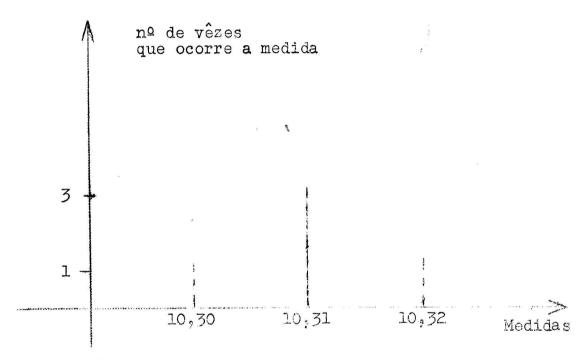
III) Desvio médio absoluto:

$$d_{ma} = \frac{|0| + |0| + 0.01 + |-0.01| + |0|}{5} = \frac{0.02}{5} = 0.004$$

IV) Desvio médio quadrático -

$$d_{mq} = \sqrt{\frac{(0.01)^2 + (-0.01)^2}{5}} = 0.01 \sqrt{\frac{2}{5}}$$

podemos adotar a seguinte representação gráfica para êste exemplo:



Podemos observar que quando desejamos um resultado de confiança, devemos não só utilizar o melhor método, e o mais preciso aparelho, como também realizar várias medidas e tomar-lhes a média, - em geral a média aritmética.

Exemplo 2 - Um topógrafo medindo 30 vêzes um ângulo abteve: (admitir medidas isentas de érro sistemático).

O valor provável, isto é, a média aritmética nos dá \bar{x} = 5º 31',5 quanto aos devios temos:

 $d_1 = -30^{\circ}, 5$, $d_2 = -20^{\circ}, 5$, $d_3 = -18^{\circ}, 5$, $d_{4} = -13^{\circ}, 5$, $d_5 = -13^{\circ}, 5$ $d_6 = -11^{\circ}, 5$, $d_7 = -8^{\circ}, 5$, $d_8 = -8^{\circ}, 5$, $d_9 = -6^{\circ}, 5$, $d_{10} = -6^{\circ}, 5$ $d_{11} = -5^{\circ}, 5$, $d_{12} = -4^{\circ}, 5$, $d_{13} = -3^{\circ}, 5$, $d_{14} = -2^{\circ}, 5$, $d_{15} = -1^{\circ}, 5$ $d_{16} = -2^{\circ}, 5$, $d_{17} = -2^{\circ}, 5$, $d_{18} = -3^{\circ}, 5$, $d_{19} = -4^{\circ}, 5$, $d_{20} = -6^{\circ}, 5$ $d_{21} = -7^{\circ}, 5$, $d_{22} = -8^{\circ}, 5$, $d_{23} = -8^{\circ}, 5$, $d_{24} = -11^{\circ}, 5$, $d_{25} = -15^{\circ}, 5$ $d_{26} = -15^{\circ}, 5$, $d_{27} = -18^{\circ}, 5$, $d_{28} = -19^{\circ}, 5$, $d_{29} = -20^{\circ}, 5$, $d_{30} = -21^{\circ}, 5$

Podemos observar em relação a êste exemplo que:

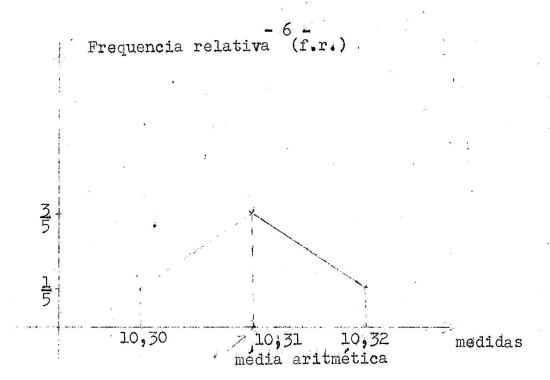
- 1.) Os desvios maiores são menos frequentes.
- 2.) A um desvio +d, corresponde outro -d¹, igual ou muito próximo à +d.

As condições acima dão uma idéia de "distribuição das medidas" de - uma certa grandeza. Para darmos idéia de uma representação de medidas, necessitamos das seguintes definições:

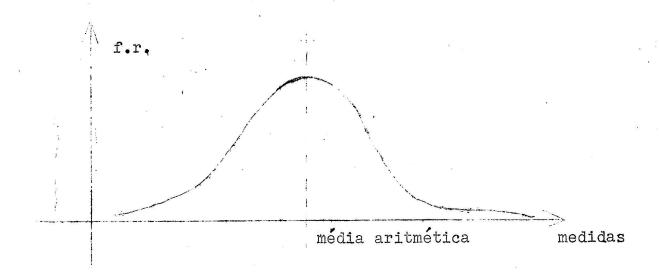
frequência absoluta: definida como o número de vêzes que ocorre uma determinada medida. Assim, no exemplo 1, a frequência absoluta de 10,30 é 1 (um), de 10,31 é 3 (três) e de 10,32 é 1 (um).

frequencia relativa: é a razão entre o número de vêzes que ocorre - uma determinada medida e o número total de medidas realizadas. No exemplo 1, a frequência - relativa de 10,30 é 1/5, de 10,31 é 3/5, e de 10,32 é 1/5.

Logo, para o exemplo 1, a representação gráfica envolvendo frequencia relativa é o seguinte:



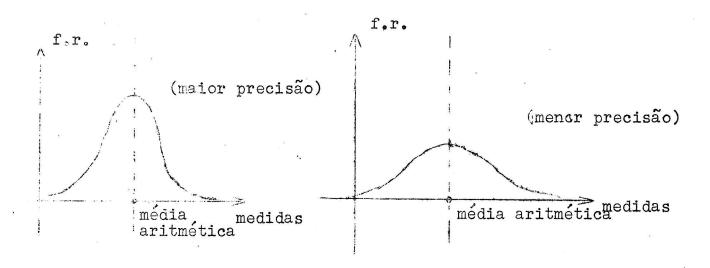
Na prática, observa-se que quando o número de medidas é "muito grande" a tendência do gráfico acima é tomar a forma como a representada abaixo.



Em estudo mais avançados sôbre teoria dos êrros, pode-se che-gar a conclusão que realmente as medidas apresentam, em geral, uma distribuição da forma representada pela figura acima, e tal distribuição é chamada normal. Verifica-se também que quando o desvio médio quadrático é pequeno.

Para maiores detalhes sobre a distribuição normal, apresentados de forma elementar, consultar: Estatística Elementar - Paul G. Hoel - "Editora Fundo de Cultura".

é (maior precisão) as diversas medidas concentram-se fortemente em tôrno da média aritmética, e quando o desvio médio quadrático é grande (menor precisão) as diversas medidas afastam-se mais da média aritmética.



Devemos salientar Linda que é costume apresentar-se o resultado - final de medidas expresso pela forma:

Valor da grandeza = média aritmética + êrro médio da média - aritmética.

onde êsse êrro é dado por:

$$e_{m} = \frac{\sqrt{d_{1}^{2} + d_{2}^{2} + \dots + d_{n}^{2}}}{n}$$

Assim, por exemplo, se na determinação de um comprimento L, a média aritmética de uma série de medidas resultou 244mm, e o desvio médio calculado foi de 2mm, então o verdadeiro valor de L é exprese so por

$$L = (244 + 2) \text{ mm}.$$

ALGARIEMOS SIGNIFICATIVOS

Eurico Carvalho Filho
Assistente da Cadeira de Química da
F.F.C.L. da U.S.P.

A conhecida expressão "uma corrento não é mais - forte que o seu elo mais fraco" pode ser assim parafraseada: - "um resultado computado não é mais exato que o número menos exato que entra na computação".

Na Matemática os números são sempre exatos. sim o número 20,64 significa exatamente 20,64; também significam a mesma coisa em Matemática os números 20,64, 20,640 ou 20,6400. Nas ciêncies experimentais, porém, os números resultam de medidas e possuem um desvio não sendo pois exatos. O experimentador conhece como a escala do instrumento é dividida, qual a menor divisão e quais as precauções que tomou para evitar as mais diversas fontes de êrro. Está, pois, em posição de conhecer o grau de exatidão da medida. Assim, o número 20,64 que pode, por exemplo, representar a leitura em uma bureta não significa que a leitura seja exatamente 20,64 mas que o valor provável está contido num intervalo que contém êsse valor. A am plitude do intervalo node ser determinada, conhecendo-se as con dições da medida. Na leitura da bureta outros observadores podem obter 20,63 ou 20,65 mas é altamente provável que todos os observadores farão uma leitura no intervalo compreendido entre 20,63 a 20,65. O último algarismo tem uma variação de - 1 e é pois incerto, enquanto todos os outros são conhecidos com certe za. Em qualquer grandeza medida apenas um algarismo incerto deve ser mantido. «wando o resultado de uma medida não é explicitamente acompanhado do desvio correspondente é convencionado ad mitir-se o desvio de - 1 no último algarismo.

demos citar a imperfeição das observações dos operadores, a inexatidão dos instrumentos e causas várias como temperatura, pressão, correntes de ar, etc. Estes motivos podem agir isolada ou concomitantemente.

O cientista ao estabelecer o valor de uma grand<u>e</u> za medida, deseja ser honesto e não quer exagerar ou subestimar.

Por outro lado, o valor deve ser dado de tal modo que possa ser facilmente reproduzido por outros observadores. Torna-se, assim necessária a adoção de métodos convencionais para a obtenção - dos resultados e a execução dos cálculos. Quase sempre os principiantes em ciências superestimam os resultados e frequentemen te gastam mais tempo e energia que o necessário, o que é revela do pelos algarismos supérfluos mantidos nas operações.

Neste trabalho vamos confinar nossa atenção ao - que chamamos de algarismos significativos e estabelecer algumas regras para a computação.

ALGARISMOS SIGNIFICATIVOS

Em um número resultado de uma medida os algarismos significativos são aquêles que exprimem tão exatamente quan
to possível a grandeza medida, sendo o último incerto. Procedemos da seguinte maneira para a sua determinação: dado um número
consideramos todos os algarismos a partir do primeiro diferente
de zero (da esquerda para a direita) até o algarismo incerto; êsses são os algarismos significativos.

Exemplos:

			,
	Medida		<u>Algarismos significativos</u>
~)	`j,63 ml		4 - 5 - 6 - 3
b)	1510,0 m		1 - 5 - 1 - 0 - 0
c)	0,54 A		5 - 4
d)	0,0125 g		1 - 2 - 5
e)	100,000 ºC	•	1 - 0 - 0 - 0 - 0
f)	0,0000102 Kv		1 - 0 - 2

O algarismo zero requer algumas considerações. Como vemos nos - evemplos c), d) e f) o zero a esquerda de um outro algarismo - nunca é significativo, servindo apenas para localizar a vírgula decimal. Torna-se muito prátido representar êsses números pela notação exponencial, escrevendo os algarismos significativos no fator numérico, com o primeiro algarismo antes de vírgula, e - multiplicando o conjunto por uma potência adequada de 10.

Assim:

	240 5 1111				
c)	0,54 A		correspondente	a	$5,4 \times 10^{-1}$ A
d)	0,0125 g		tt	a	$1,25 \times 10^{-2} \text{g}$
f)	0.0000102	Κv	TI .	а	$1.02 \times 10^{-5} \text{Ky}$

Por outro lado os exemplos b) e e) significam que o comprimento 1.510,0 m foi medido até o décimo metro estando localizada no - último zero a incerteza da medida e a temperatura tem o algaris mo incerto no milésimo de grau. De acôrdo com o que já foi dito como nos dois casos nao foi dado o desvio de cada medida êste - deve ser interpretado como - 1 no último algarismo, ou seja - 0,1 m e - 0,001°C, respectivamente.

Resta ainda considerar que certas grandezas usadas nas ciências experimentais têm, por definição, valores arbitrários. êsses valores são representados por números exatos, não afetados de desvios.

Exemplos: O calor de formação dos elementos químicos é, por definição, igual a zero calorias; o pêso atômico - do carbono, é por definição, igual a 21; as condições normais de pressão e temperatura são, por definição, pressão de l atmosfera ou 760 milímetros de mercúrio e temperatura de 0°C

REGRAS PARA OS CÁLCULOS:

1. Quando se torna necessário desprezar algarismos náo significativos de um número usa-se a seguinte regra: se o primeiro
algarismo depois do último significativo for 5 aumenta-se de
uma unidade o último algarismo significativo; se for 5 conser
va-se simplesmente o último algarismo significativo. O número 23,4056, escrito com cinco algarismos significativos é 23,406; o
número 2,3423, conservado três significativos é escrito 2,34.

2. Na soma e na subtração conserva-se nos valores um número de casas decimio igual ao existente no valor com menor número de decimais.

Seja a somê das seguintes parcelas: $25,852,\ldots$ 0,0095 e 2,46. Como a parcela 2,46 tem apenas duas decimais, somente duas decimais devem ser mantidas nas outras parcelas.

Podemos reafirmar esse resultado conservando tôdas as casas decimais e colocando um x onde as decimais sáo desconhecidas. 25,852x 0,0095 2,46xx 28,32xx

Uma outra maneira para chegar a êsse resultado é fazer a soma - dos valores máximos e mínimos das parcelas considerando o des-- vio como l unidade no último algarismo significativo.

Valores máximos	Valores minimos
25,853	25,851
0,0096	0,0094
2,47	2,45
28,3326	28,3104

A soma 28,32 cai no intervalo 28,33 e 28,31 mostrando que o método de adição está de acôrdo com o critério adotado.

Seja a subtração: 5,28 menos 3,1384 Com a aplicação da regra chega-se a

> 5,28 3,14 2,14

3. Na multiplicação e na divisão conserva-se em cada valor um número de algarismos tal que a percentagem de incerteza em - cada um não seja maior que a existente no valor com menor núme-ro de algarismos significativos.

Por exemplo, o produto 10,26 x 0,0094 x 1,252 - deve ser reescrito 10,3 x 0,0094 x 1,25. O fator 0,0094 tem ape nas dois algarismos significativos e os outros, quatro. A incer teza nesse fator é 1 em 94, aproximadamente 1 em 100 ou 1%. Para não introduzir uma incerteza maior que 1% os outros fatôres precisam reter interiores of número de algarismos do produto deve ser tal que a incerteza da resposta não seja maior do que a existente no fator mais pobre em algarismos significativos. - Assim, no exemplo acima chegaremos a

ou seja 0,121

O mesmo procedimento deve ser seguido na divisão.

No exemplo

$$\frac{3,534 \times 0,01/45}{2,1982}$$

os valores devem ser arrendondados para

$$\frac{3,53 \times 0,0145}{2,20}$$

Com o resultado igual a 0,0236

- 4. Na maioria dos casos quando se deseja uma exatidão não maior que 0,25%, na multiplicação e divisão, recomenda-se uma régua de cálculo de 25 cm. No caso de exatidão maior que 0,25% recomenda-se o uso de logarítmos.
- 5. Na computação com logaritimos decimais deve-se reter na mantissa do logarítmo o mesmo número de algarismos que os do número considerado. A característica por denotar simplesmente a magnitude não éconsiderada como algarismo significativo.

Consideremos agora um exemplo em que estão envolvidas várias operações aritméticas: Seja a expressão

$$x = \begin{bmatrix} 0,235 & (8,5+12,54) \\ \hline 455,2-453,15 \end{bmatrix}^{2}$$

em que devem ser executados soma, subtração, multiplicação, divisão e potenciação. Primeiramente fazemos a adição e a subtração arredondando antes o valor 12,54 para 12,5 e 453,15 para -453,2.

$$x = \frac{0,235 \times 21,0}{2,0}$$

Antes da multiplicação e divisão arredondamos os valores 0,235 e 21,0 para dois algarismos significativos.

$$x = \frac{0,24 \times 21}{2,0}$$

Com o resultado final com dois significativos

$$x = (2,5)^{1/2}$$

 $x = 6,3$

Queremos ainda advertir que os desvios resultantos da medida de uma grandeza nem sempre são ± 1 no último algarismo significativo, mas poderão ser maiores dependendo de como a medição é feita. Na leitura de um termômetro de Beckmann, por exemplo, com o auxílio de uma lente e muita prática poderemos dividir o intervalo de um centésimo de grau em cinco partes com o que estimaremos dois milésimos de grau e c desvio será de ± 0.002°C.

Finalizando convém observar que em muitos casos sendo no número de algarismos significativos do valor mais pobre em algarismos significativos é aconselhável reter nos outros valores n+1 algarismos e efetuar as operações indicadas. Por ou tro lado, não foram considerados os cálculos dos desvios e consequentemente os resultados das operações não aparecem afetados dos desvios correspondentes.

Acreditamos que estas regras aproximadas sejam diteis para o fim a que se destinam. Um tratamento mais rigoroso ficará, se fôr o caso, para outra oportunidade.